The generator matrix 1 0 1 1 1 1 1 6 1 1 1 X 2X+6 1 X+6 1 1 1 1 1 1 1 1 1 2X 1 1 1 1 1 0 X+3 1 1 1 2X+6 2X+3 3 X+6 0 1 1 8 X+6 X+5 2X+7 1 2X 2X+8 X+1 1 1 X+5 1 0 2X+5 5 2X+1 1 X+6 2X X+8 1 1 X+7 2X+1 2X+7 2X+5 7 1 1 X+5 2X+1 7 1 1 1 1 0 0 2X 0 6 6 2X+6 X+6 0 6 2X X X 2X+3 6 2X+3 X+6 X+3 X+6 X+6 2X+6 2X+3 X+6 X+3 6 X X 3 X+3 2X+6 6 X+3 6 2X+6 6 2X+3 2X+3 X 6 0 0 0 3 3 0 6 3 6 6 3 0 6 6 3 3 6 0 3 0 0 6 3 6 6 3 0 3 3 6 6 3 3 3 0 0 3 6 6 generates a code of length 39 over Z9[X]/(X^2+6,3X) who´s minimum homogenous weight is 71. Homogenous weight enumerator: w(x)=1x^0+192x^71+314x^72+828x^73+1332x^74+1216x^75+1404x^76+3366x^77+1932x^78+2484x^79+3390x^80+1452x^81+1116x^82+246x^83+168x^84+144x^86+12x^87+72x^89+4x^90+6x^92+2x^99+2x^102 The gray image is a code over GF(3) with n=351, k=9 and d=213. This code was found by Heurico 1.16 in 0.665 seconds.